Advertisement
Review| Volume 4, ISSUE 6, 100479, June 2022

Download started.

Ok

Lipid alterations in chronic liver disease and liver cancer

  • Author Footnotes
    † Contributed equally
    Bichitra Paul
    Footnotes
    † Contributed equally
    Affiliations
    Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Author Footnotes
    † Contributed equally
    Monika Lewinska
    Footnotes
    † Contributed equally
    Affiliations
    Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Author Footnotes
    † Contributed equally
    Jesper B. Andersen
    Correspondence
    Corresponding author. Address: Ole Maaløes Vej 5, Copenhagen N, DK-2200 Denmark. Tel.: +45 35325834, fax: +45 72620285.
    Footnotes
    † Contributed equally
    Affiliations
    Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Author Footnotes
    † Contributed equally
Open AccessPublished:March 25, 2022DOI:https://doi.org/10.1016/j.jhepr.2022.100479

      Summary

      Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.

      Keywords

      Abbreviations:

      ACC (acetyl-CoA carboxylase), ACLY (ATP citrate lyase), ALD (alcohol-related liver disease), BAs (bile acids), CCA (cholangiocarcinoma), Cer (ceramide(s)), CPT (carnitine palmitoyltransferase), DNL (de novo lipogenesis), ELOV1-6 (elongation of very-long-chain fatty acids), FA (fatty acid), FABP (fatty acid-binding protein), FADS2 (fatty acid desaturase 2), FAO (fatty acid oxidation), FASN (fatty acid synthase), FXR (farnesoid X receptor), HCC (hepatocellular carcinoma), HMGCR (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase), HSCs (hepatic stellate cells), LA (linoleic acid), LPC (lysophosphatidylcholine), LXR (liver X receptor), MUFA (monounsaturated fatty acid), NAFLD (non-alcoholic fatty liver disease), NASH (non-alcoholic steatohepatitis), PC (phosphatidylcholine), PPARs (peroxisome proliferator-activated receptors), PSC (primary sclerosing cholangitis), PUFA (polyunsaturated fatty acid), S1P (sphingosine-1-phosphate), SCD (stearoyl-CoA desaturase), SE (sterol esters), SFA (saturated fatty acid), SM (sphingomyelin), SREBP (sterol regulatory element-binding protein), TERT (telomerase reverse transcriptase), TG (triglycerides), TLR (Toll-like receptor)
      • Lipidomic alterations are a common feature of primary liver cancers (hepatocellular carcinoma and cholangiocarcinoma) and their risk factors.
      • Unique changes in the lipid landscape of hepatocellular carcinoma and cholangiocarcinoma allow for differential diagnosis of these malignancies.
      • Hepatocellular carcinoma and cholangiocarcinoma show differential dependency on de novo lipogenesis.
      • Transcriptional deregulation of lipid metabolism differs between hepatocellular carcinoma and cholangiocarcinoma.

      Introduction

      Liver cancer is the fourth leading cause of cancer-related deaths worldwide,
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      and incidence and mortality rates are steadily increasing.
      • Rahib L.
      • Smith B.D.
      • Aizenberg R.
      • Rosenzweig A.B.
      • Fleshman J.M.
      • Matrisian L.M.
      Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.
      It is estimated that, by 2025, more than 1 million people will be affected by primary liver cancer annually,
      • Ferlay J.
      • Colombet M.
      • Soerjomataram I.
      • Mathers C.
      • Parkin D.M.
      • Pineros M.
      • et al.
      Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.
      posing a severe health challenge and societal burden. The most frequent types of primary liver cancer are hepatocellular carcinoma (HCC), accounting for up to 90%
      • Akinyemiju T.
      • Abera S.
      • Ahmed M.
      • Alam N.
      • Alemayohu M.A.
      • Allen C.
      • et al.
      Global Burden of Disease Liver Cancer C
      The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015.
      of all cases, and cholangiocarcinoma (CCA), accounting for 10-15%.
      • DeOliveira M.L.
      • Cunningham S.C.
      • Cameron J.L.
      • Kamangar F.
      • Winter J.M.
      • Lillemoe K.D.
      • et al.
      Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution.
      ,
      • Nakeeb A.
      • Pitt H.A.
      • Sohn T.A.
      • Coleman J.
      • Abrams R.A.
      • Piantadosi S.
      • et al.
      Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors.
      The complex heterogeneity of these malignancies makes their early diagnosis and the development of therapies difficult. The common risk factors for liver cancer development are chronic HBV
      • Akinyemiju T.
      • Abera S.
      • Ahmed M.
      • Alam N.
      • Alemayohu M.A.
      • Allen C.
      • et al.
      Global Burden of Disease Liver Cancer C
      The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015.
      and HCV infections (whose frequency has decreased considerably due to successful vaccination programmes and antiviral drugs),
      • Kanwal F.
      • Kramer J.
      • Asch S.M.
      • Chayanupatkul M.
      • Cao Y.
      • El-Serag H.B.
      Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents.
      alcohol abuse,
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      and metabolic diseases including non-alcoholic fatty liver disease (NAFLD),
      • Estes C.
      • Razavi H.
      • Loomba R.
      • Younossi Z.
      • Sanyal A.J.
      Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.
      ranging from simple steatosis to non-alcoholic steatohepatitis (NASH),
      • Estes C.
      • Razavi H.
      • Loomba R.
      • Younossi Z.
      • Sanyal A.J.
      Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.
      obesity,
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      and diabetes mellitus.
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      Additional risk factors include aflatoxin exposure in HCC,
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      and inflammation of the biliary tract in CCA,
      • Banales J.M.
      • Marin J.J.G.
      • Lamarca A.
      • Rodrigues P.M.
      • Khan S.A.
      • Roberts L.R.
      • et al.
      Cholangiocarcinoma 2020: the next horizon in mechanisms and management.
      with underlying causes including primary sclerosing cholangitis (PSC), cholestasis, bile stones and liver fluke infestation.
      Metabolic alterations are a well-established hallmark of cancer.
      • Warburg O.
      • Wind F.
      • Negelein E.
      The metabolism of tumors in the body.
      The liver is the central organ for metabolism in the body
      • Magnusson I.
      • Schumann W.C.
      • Bartsch G.E.
      • Chandramouli V.
      • Kumaran K.
      • Wahren J.
      • et al.
      Noninvasive tracing of Krebs cycle metabolism in liver.
      • Diraison F.
      • Large V.
      • Brunengraber H.
      • Beylot M.
      Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM.
      • Large V.
      • Brunengraber H.
      • Odeon M.
      • Beylot M.
      Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis.
      • Jones J.G.
      • Solomon M.A.
      • Cole S.M.
      • Sherry A.D.
      • Malloy C.R.
      An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
      • Jones J.G.
      • Solomon M.A.
      • Sherry A.D.
      • Jeffrey F.M.
      • Malloy C.R.
      13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C]propionate, phenylacetate, and acetaminophen.
      ; thus, metabolic processes are often highly altered in liver cancer (reviewed in
      • Satriano L.
      • Lewinska M.
      • Rodrigues P.M.
      • Banales J.M.
      • Andersen J.B.
      Metabolic rearrangements in primary liver cancers: cause and consequences.
      ). Distinct metabolic alterations have been uncovered in glucose, nucleotide, amino acid, and lipid metabolism in liver cancer.
      • Satriano L.
      • Lewinska M.
      • Rodrigues P.M.
      • Banales J.M.
      • Andersen J.B.
      Metabolic rearrangements in primary liver cancers: cause and consequences.
      Dysregulation of lipids plays important roles in both the development
      • Calvisi D.F.
      • Wang C.
      • Ho C.
      • Ladu S.
      • Lee S.A.
      • Mattu S.
      • et al.
      Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma.
      and the progression
      • Lu Y.
      • Chen J.
      • Huang C.
      • Li N.
      • Zou L.
      • Chia S.E.
      • et al.
      Comparison of hepatic and serum lipid signatures in hepatocellular carcinoma patients leads to the discovery of diagnostic and prognostic biomarkers.
      of liver cancer, which is a consequence of lipids being a vast and multifarious group of complex structured biomolecules. Lipids are involved in diverse biological processes in the body from energy storage
      • Kuerschner L.
      • Moessinger C.
      • Thiele C.
      Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets.
      and metabolism,
      • Nieman K.M.
      • Kenny H.A.
      • Penicka C.V.
      • Ladanyi A.
      • Buell-Gutbrod R.
      • Zillhardt M.R.
      • et al.
      Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth.
      to epigenetic regulation,
      • Sun D.
      • Zhao T.
      • Long K.
      • Wu M.
      • Zhang Z.
      Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells.
      signal transduction,
      • Chen S.Z.
      • Ling Y.
      • Yu L.X.
      • Song Y.T.
      • Chen X.F.
      • Cao Q.Q.
      • et al.
      4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-alpha.
      immunoregulation,
      • Baek A.E.
      • Yu Y.A.
      • He S.
      • Wardell S.E.
      • Chang C.Y.
      • Kwon S.
      • et al.
      The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells.
      inflammation,
      • Fu H.
      • Tang B.
      • Lang J.
      • Du Y.
      • Cao B.
      • Jin L.
      • et al.
      High-fat diet promotes macrophage-mediated hepatic inflammation and aggravates diethylnitrosamine-induced hepatocarcinogenesis in mice.
      and cell-cell recognition.
      • Kojima N.
      • Hakomori S.
      Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein.
      The study of the lipidome and its dynamic nature used to pose a significant technical challenge. However, advances in mass spectrometry and chromatography techniques in the past decade have provided deeper insights into the metabolic heterogeneity and biological function(s) of the lipidome in both normal homeostasis and disease.
      • Han X.
      • Gross R.W.
      Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics.
      • Zech T.
      • Ejsing C.S.
      • Gaus K.
      • de Wet B.
      • Shevchenko A.
      • Simons K.
      • et al.
      Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling.
      • Schmelzer K.
      • Fahy E.
      • Subramaniam S.
      • Dennis E.A.
      The lipid maps initiative in lipidomics.
      • Graessler J.
      • Schwudke D.
      • Schwarz P.E.
      • Herzog R.
      • Shevchenko A.
      • Bornstein S.R.
      Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.
      In this review, we will highlight the major lipidomic rearrangements that occur in the development and progression of liver cancer, focusing on lipids structural function and roles in energy storage and signal transduction.

      The origin and role(s) of hepatic lipids

      Fatty acids (FAs), including carboxylic acids with a chain from 2 to 36 carbon atoms,
      • Schmelzer K.
      • Fahy E.
      • Subramaniam S.
      • Dennis E.A.
      The lipid maps initiative in lipidomics.
      and cholesterol, consisting of 4 linked hydrocarbon rings,
      • Fahy E.
      • Subramaniam S.
      • Brown H.A.
      • Glass C.K.
      • Merrill Jr., A.H.
      • Murphy R.C.
      • et al.
      A comprehensive classification system for lipids.
      are the fundamental building blocks of all lipids. The hepatic FA pool is mainly dependent on the FA uptake of serum non-esterified FAs from dietary sources
      • Mendenhall C.L.
      Origin of hepatic triglyceride fatty acids: quantitative estimation of the relative contributions of linoleic acid by diet and adipose tissue in normal and ethanol-fed rats.
      (in the fed state) or adipose tissue lipolysis
      • Mendenhall C.L.
      Origin of hepatic triglyceride fatty acids: quantitative estimation of the relative contributions of linoleic acid by diet and adipose tissue in normal and ethanol-fed rats.
      ,
      • Donnelly K.L.
      • Smith C.I.
      • Schwarzenberg S.J.
      • Jessurun J.
      • Boldt M.D.
      • Parks E.J.
      Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
      (in the fasting state) (Fig. 1). However, 15-25% of all FAs originate from a process termed de novo lipogenesis (DNL).
      • Donnelly K.L.
      • Smith C.I.
      • Schwarzenberg S.J.
      • Jessurun J.
      • Boldt M.D.
      • Parks E.J.
      Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
      ,
      • Diraison F.
      • Moulin P.
      • Beylot M.
      Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease.
      This process allows for FA synthesis up to the Δ9 position, while other FAs need to be taken up from dietary sources.
      • Burr G.O.
      • Burr M.M.
      Nutrition classics from The Journal of Biological Chemistry 82:345-367, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet.
      ,
      • Rieckenhoff I.G.
      • Holman R.T.
      • Burr G.O.
      Polyethenoid fatty acid metabolism; effect of dietary fat on polyethenoid fatty acids of rat tissues.
      Contrary to FAs, the majority (80%) of cholesterol is synthesised internally, and almost 50% of cholesterol synthesis is controlled by the liver.
      • Turley S.D.
      • Andersen J.M.
      • Dietschy J.M.
      Rates of sterol synthesis and uptake in the major organs of the rat in vivo.
      With a body mass of 70 kg, a human contains around 100 grams of cholesterol with a synthesis rate of 1.2 grams per day.
      • Repa J.J.
      • Mangelsdorf D.J.
      The role of orphan nuclear receptors in the regulation of cholesterol homeostasis.
      Whereas cholesterol can be sufficiently synthesised, the dietary intake can range from 300-500 mg per day.
      • Repa J.J.
      • Mangelsdorf D.J.
      The role of orphan nuclear receptors in the regulation of cholesterol homeostasis.
      FA and cholesterol are the backbone of a very diverse group of biomolecules that can be classified based on their structure, chemical properties (such as hydrophobicity or hydrophilicity), and biological function(s)
      • Fahy E.
      • Subramaniam S.
      • Brown H.A.
      • Glass C.K.
      • Merrill Jr., A.H.
      • Murphy R.C.
      • et al.
      A comprehensive classification system for lipids.
      (Fig. 1).
      Figure thumbnail gr1
      Fig. 1Simplified representation of the major metabolic pathways responsible for the uptake, transport, synthesis, and utilisation of lipids in the liver.
      FA and cholesterol are the building blocks of most complex lipids. They can either be synthesised (orange arrows) via DNL (up to 25% of FA pool) and cholesterol synthesis (up to 80% of cholesterol pool) or they can be taken directly from the circulation. FA are subjected to FAO (red arrow) via a series of catabolic reactions, which are carried out in the mitochondria to generate ATP or used to form complex lipids. Lipids play structural (blue), signalling (green) or energy storage (yellow) functions. BA, bile acids; Cer, ceramides; Chol, cholesterol; ChoE, cholesterol esters; DG, diglyceride; DNL, de novo lipogenesis; FAO, fatty acid oxidation; FFA, free fatty acids; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPI, lysophosphoinositide; LPS, lysophosphatidylserine; MUFA, monounsaturated FA; PA, phosphatidate; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphoinositide; PS, phosphatidylserine; PUFA, polyunsaturated FA; S1P, sphingosine-1-phosphate; SM, sphingomyelin; TG, triglyceride.

      Energy storage

      The human body stores energy as fat and carbohydrates. The neutral storage of FAs in the healthy liver is in the form of triglycerides (TGs), which are 3 FAs attached to a glycerol moiety, and sterol esters (SEs), in which FA is esterified to sterol.
      • Fahy E.
      • Subramaniam S.
      • Brown H.A.
      • Glass C.K.
      • Merrill Jr., A.H.
      • Murphy R.C.
      • et al.
      A comprehensive classification system for lipids.
      Neutral lipids (SEs and TGs) are stored in lipid droplets, and in a healthy liver, these lipids should not exceed 5%.
      European Association for the Study of the LEuropean Association for the Study of DEuropean Association for the Study of O
      EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.
      FAs stored in TGs and SEs can be utilised at any time during liver homeostasis to generate energy (ATP) via fatty acid oxidation (FAO) or be transported to other organs in very-low-density lipoprotein.

      Structural lipids

      Glycerophospholipids, sphingolipids, and cholesterol are major building blocks of the cellular membrane (Fig. 1). Glycerophospholipids include phosphatidylcholine (PC), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. PC accounts for more than 50% of the phospholipids in most eukaryotic membranes.
      • van Meer G.
      • Voelker D.R.
      • Feigenson G.W.
      Membrane lipids: where they are and how they behave.
      The second most abundant lipid in the mammalian membrane is cholesterol, which accounts for 30% of lipids, and increases the lipid-packing density to maintain a high membrane fluidity.
      • Zhang X.
      • Barraza K.M.
      • Beauchamp J.L.
      Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface.
      Lastly, sphingomyelin (SM) is the most abundant sphingolipid in mammalian cells and this lipid plays a crucial role in the formation of sterol-enriched ordered membrane domains and in cell-cell signalling.
      • van Meer G.
      • Voelker D.R.
      • Feigenson G.W.
      Membrane lipids: where they are and how they behave.

      Signalling molecules

      Lipids act as first (extracellular) and second (intracellular) messengers in signal transduction and molecular recognition processes (reviewed in
      • van Meer G.
      • Voelker D.R.
      • Feigenson G.W.
      Membrane lipids: where they are and how they behave.
      ,
      • Wymann M.P.
      • Schneiter R.
      Lipid signalling in disease.
      ). As such, membrane glycerolipids and sphingolipids transduce signals through hydrolysis to generate bioactive molecules: ceramides and sphingosine-1-phosphate (S1P),
      • Overkleeft H.S.
      • Renkema G.H.
      • Neele J.
      • Vianello P.
      • Hung I.O.
      • Strijland A.
      • et al.
      Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase.
      while steroids (oxysterols, bile acids [BAs], steroid hormones) and FAs interact directly with receptors,
      • Brown A.J.
      • Goldsworthy S.M.
      • Barnes A.A.
      • Eilert M.M.
      • Tcheang L.
      • Daniels D.
      • et al.
      The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.
      • Nilsson N.E.
      • Kotarsky K.
      • Owman C.
      • Olde B.
      Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids.
      • Soroosh P.
      • Wu J.
      • Xue X.
      • Song J.
      • Sutton S.W.
      • Sablad M.
      • et al.
      Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation.
      • DuSell C.D.
      • Umetani M.
      • Shaul P.W.
      • Mangelsdorf D.J.
      • McDonnell D.P.
      27-hydroxycholesterol is an endogenous selective estrogen receptor modulator.
      • Umetani M.
      • Domoto H.
      • Gormley A.K.
      • Yuhanna I.S.
      • Cummins C.L.
      • Javitt N.B.
      • et al.
      27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen.
      such as CD36 (FA translocase) (Fig. 1).

      Lipid alterations in liver diseases associated with the development of liver cancer

      Prominent steatosis is caused by FA uptake and DNL exceeding FAO and secretion,
      • Falcon A.
      • Doege H.
      • Fluitt A.
      • Tsang B.
      • Watson N.
      • Kay M.A.
      • et al.
      FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase.
      • Doege H.
      • Baillie R.A.
      • Ortegon A.M.
      • Tsang B.
      • Wu Q.
      • Punreddy S.
      • et al.
      Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis.
      • Doege H.
      • Grimm D.
      • Falcon A.
      • Tsang B.
      • Storm T.A.
      • Xu H.
      • et al.
      Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia.
      and is a shared feature underlying several risk factors of liver cancer. Accordingly, increased intrahepatic lipid accumulation is observed in viral hepatitis,
      • Yasui K.
      • Harano Y.
      • Mitsuyoshi H.
      • Tsuji K.
      • Endo M.
      • Nakajima T.
      • et al.
      Steatosis and hepatic expression of genes regulating lipid metabolism in Japanese patients infected with hepatitis C virus.
      ,
      • Machado M.V.
      • Oliveira A.G.
      • Cortez-Pinto H.
      Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients.
      alcoholic hepatitis,
      • Connor C.L.
      Fatty infiltration of the liver and the development of cirrhosis in diabetes and chronic alcoholism.
      and among individuals suffering from metabolic diseases (obesity,
      • Seppala-Lindroos A.
      • Vehkavaara S.
      • Hakkinen A.M.
      • Goto T.
      • Westerbacka J.
      • Sovijarvi A.
      • et al.
      Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men.
      diabetes,
      • Scherer T.
      • Lindtner C.
      • O'Hare J.
      • Hackl M.
      • Zielinski E.
      • Freudenthaler A.
      • et al.
      Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain.
      and NAFLD
      • Holt H.B.
      • Wild S.H.
      • Wood P.J.
      • Zhang J.
      • Darekar A.A.
      • Dewbury K.
      • et al.
      Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects.
      ,
      • Teng F.
      • Jiang J.
      • Zhang J.
      • Yuan Y.
      • Li K.
      • Zhou B.
      • et al.
      The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling.
      ), all of which pose a risk for liver cancer development. Conversely, steatosis is rarely observed alongside PSC or primary biliary cholangitis,
      • Bosch D.E.
      • Yeh M.M.
      Primary sclerosing cholangitis is protective against nonalcoholic fatty liver disease in inflammatory bowel disease.
      which are conditions associated with BA deregulation.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Sang C.
      • Wang X.
      • Zhou K.
      • Sun T.
      • Bian H.
      • Gao X.
      • et al.
      Bile acid profiles are distinct among patients with different etiologies of chronic liver disease.

      Viral hepatitis

      HBV and HCV infections are important risk factors for liver cancer development. HBV is the main aetiology for HCC in most regions of Asia, Africa, and South America. HCV is the predominant cause in Western Europe, North America, and Japan.
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      Hepatic steatosis is often associated with both HBV and HCV infections,
      • Yasui K.
      • Harano Y.
      • Mitsuyoshi H.
      • Tsuji K.
      • Endo M.
      • Nakajima T.
      • et al.
      Steatosis and hepatic expression of genes regulating lipid metabolism in Japanese patients infected with hepatitis C virus.
      ,
      • Machado M.V.
      • Oliveira A.G.
      • Cortez-Pinto H.
      Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients.
      ,
      • Wu J.M.
      • Skill N.J.
      • Maluccio M.A.
      Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma.
      as well as being observed in HBx (HBx protein is crucial in HBV tumorigenesis) transgenic
      • Lin H.C.
      • Chen Y.F.
      • Hsu W.H.
      • Yang C.W.
      • Kao C.H.
      • Tsai T.F.
      Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model.
      ,
      • Wu Y.F.
      • Fu S.L.
      • Kao C.H.
      • Yang C.W.
      • Lin C.H.
      • Hsu M.T.
      • et al.
      Chemopreventive effect of silymarin on liver pathology in HBV X protein transgenic mice.
      and HCV transgenic mouse models.
      • Moriya K.
      • Fujie H.
      • Shintani Y.
      • Yotsuyanagi H.
      • Tsutsumi T.
      • Ishibashi K.
      • et al.
      The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice.
      Hence, viral hepatitis leads to prominent changes in both the serum
      • Wu J.M.
      • Skill N.J.
      • Maluccio M.A.
      Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma.
      and hepatic (tumour and tumour-adjacent compartments)
      • Haberl E.M.
      • Weiss T.S.
      • Peschel G.
      • Weigand K.
      • Kohler N.
      • Pauling J.K.
      • et al.
      Liver lipids of patients with hepatitis B and C and associated hepatocellular carcinoma.
      lipidomes (Table 1). Indeed, the blood FA composition is significantly altered in HBV- and HCV-infected patients. As such, serum levels of saturated FAs (SFAs) and monounsaturated FAs (MUFAs) are significantly increased
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B.
      in HBV-positive patients, and increase in parallel with disease severity.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      ,
      • Zheng H.
      • Chen M.
      • Lu S.
      • Zhao L.
      • Ji J.
      • Gao H.
      Metabolic characterization of hepatitis B virus-related liver cirrhosis using NMR-based serum metabolomics.
      Concurrently, the class of polyunsaturated FA (PUFAs) is depleted.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B.
      This change in FA composition is also observed in mouse HBV-positive liver tumours.
      • Teng C.F.
      • Hsieh W.C.
      • Yang C.W.
      • Su H.M.
      • Tsai T.F.
      • Sung W.C.
      • et al.
      A biphasic response pattern of lipid metabolomics in the stage progression of hepatitis B virus X tumorigenesis.
      Moreover, PUFAs are necessary for HCV particle replication
      • Hofmann S.
      • Krajewski M.
      • Scherer C.
      • Scholz V.
      • Mordhorst V.
      • Truschow P.
      • et al.
      Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication.
      as knockdown of fatty acid desaturase 2 (FADS2) - the first step in PUFA synthesis – impairs HCV virus particle production. Similarly, FAs are involved in stabilisation of the HBx protein.
      • Cho H.K.
      • Kim S.Y.
      • Yoo S.K.
      • Choi Y.H.
      • Cheong J.
      Fatty acids increase hepatitis B virus X protein stabilization and HBx-induced inflammatory gene expression.
      HBx can also increase the cholesterol levels in HCC cells, both in vitro
      • Cui M.
      • Xiao Z.
      • Sun B.
      • Wang Y.
      • Zheng M.
      • Ye L.
      • et al.
      Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4.
      and in vivo.
      • Wang Y.
      • Wu T.
      • Hu D.
      • Weng X.
      • Wang X.
      • Chen P.J.
      • et al.
      Intracellular hepatitis B virus increases hepatic cholesterol deposition in alcoholic fatty liver via hepatitis B core protein.
      Conversely, in both patients and HCV transgenic mice, cholesterol,
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      ,
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      TG,
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      and lysophosphatidylcholine (LPC)
      • Wu T.
      • Zheng X.
      • Yang M.
      • Zhao A.
      • Li M.
      • Chen T.
      • et al.
      Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients.
      ,
      • Sun J.
      • Zhao Y.
      • Qin L.
      • Li K.
      • Zhao Y.
      • Sun H.
      • et al.
      Metabolomic profiles for HBV related hepatocellular carcinoma including alpha-fetoproteins positive and negative subtypes.
      of longer FA chains have been shown to be significantly depleted.
      • Lerat H.
      • Kammoun H.L.
      • Hainault I.
      • Merour E.
      • Higgs M.R.
      • Callens C.
      • et al.
      Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice.
      Table 1Deregulation of blood (and tissue) lipids as risk factors for liver cancer, HCC and CCA.
      Serum/plasmaTissue
      LipidViral hepatitisAlcoholic hepatitisNAFLDPSC
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      CCA
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      HCCHCC

      T vs. SL
      SFA
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B.
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ==
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      ,
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      ,
      • Ismail I.T.
      • Elfert A.
      • Helal M.
      • Salama I.
      • El-Said H.
      • Fiehn O.
      Remodeling lipids in the transition from chronic liver disease to hepatocellular carcinoma.
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      MUFA
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B.
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ==
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      ,
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      ,
      • Ismail I.T.
      • Elfert A.
      • Helal M.
      • Salama I.
      • El-Said H.
      • Fiehn O.
      Remodeling lipids in the transition from chronic liver disease to hepatocellular carcinoma.
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      PUFA
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B.
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ==
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      ,
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      ,
      • Vlock E.M.
      • Karanjit S.
      • Talmon G.
      • Farazi P.A.
      Reduction of polyunsaturated fatty acids with tumor progression in a lean non-alcoholic steatohepatitis-associated hepatocellular carcinoma mouse model.
      TG
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ,
      • Kotronen A.
      • Velagapudi V.R.
      • Yetukuri L.
      • Westerbacka J.
      • Bergholm R.
      • Ekroos K.
      • et al.
      Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations.
      ,
      • Oresic M.
      • Hyotylainen T.
      • Kotronen A.
      • Gopalacharyulu P.
      • Nygren H.
      • Arola J.
      • et al.
      Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids.
      =
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      • Che L.
      • Chi W.
      • Qiao Y.
      • Zhang J.
      • Song X.
      • Liu Y.
      • et al.
      Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans.
      Cholesterol
      • Arain S.Q.
      • Talpur F.N.
      • Channa N.A.
      • Ali M.S.
      • Afridi H.I.
      Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients.
      ,
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      • Vlock E.M.
      • Karanjit S.
      • Talmon G.
      • Farazi P.A.
      Reduction of polyunsaturated fatty acids with tumor progression in a lean non-alcoholic steatohepatitis-associated hepatocellular carcinoma mouse model.
      ,
      • Hall Z.
      • Chiarugi D.
      • Charidemou E.
      • Leslie J.
      • Scott E.
      • Pellegrinet L.
      • et al.
      Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma.
      ,
      • Liang J.Q.
      • Teoh N.
      • Xu L.
      • Pok S.
      • Li X.
      • Chu E.S.H.
      • et al.
      Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling.
      ,
      • Tsuchida T.
      • Lee Y.A.
      • Fujiwara N.
      • Ybanez M.
      • Allen B.
      • Martins S.
      • et al.
      A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer.
      • Qin W.H.
      • Yang Z.S.
      • Li M.
      • Chen Y.
      • Zhao X.F.
      • Qin Y.Y.
      • et al.
      High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice.
      BA
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      • Huang Q.
      • Tan Y.
      • Yin P.
      • Ye G.
      • Gao P.
      • Lu X.
      • et al.
      Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics.
      Cholesterol ester
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      • Che L.
      • Chi W.
      • Qiao Y.
      • Zhang J.
      • Song X.
      • Liu Y.
      • et al.
      Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans.
      ,
      • Liu D.
      • Wong C.C.
      • Fu L.
      • Chen H.
      • Zhao L.
      • Li C.
      • et al.
      Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target.
      LPC
      • Wu T.
      • Zheng X.
      • Yang M.
      • Zhao A.
      • Li M.
      • Chen T.
      • et al.
      Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients.
      ,
      • Sun J.
      • Zhao Y.
      • Qin L.
      • Li K.
      • Zhao Y.
      • Sun H.
      • et al.
      Metabolomic profiles for HBV related hepatocellular carcinoma including alpha-fetoproteins positive and negative subtypes.
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      • Oresic M.
      • Hyotylainen T.
      • Kotronen A.
      • Gopalacharyulu P.
      • Nygren H.
      • Arola J.
      • et al.
      Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids.
      ,
      • Gorden D.L.
      • Myers D.S.
      • Ivanova P.T.
      • Fahy E.
      • Maurya M.R.
      • Gupta S.
      • et al.
      Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
      • Cotte A.K.
      • Cottet V.
      • Aires V.
      • Mouillot T.
      • Rizk M.
      • Vinault S.
      • et al.
      Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients.
      =
      PC
      • Oresic M.
      • Hyotylainen T.
      • Kotronen A.
      • Gopalacharyulu P.
      • Nygren H.
      • Arola J.
      • et al.
      Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids.
      ,
      • Gorden D.L.
      • Myers D.S.
      • Ivanova P.T.
      • Fahy E.
      • Maurya M.R.
      • Gupta S.
      • et al.
      Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
      • Hall Z.
      • Chiarugi D.
      • Charidemou E.
      • Leslie J.
      • Scott E.
      • Pellegrinet L.
      • et al.
      Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma.
      Ceramide
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ,
      • Masoodi M.
      • Gastaldelli A.
      • Hyotylainen T.
      • Arretxe E.
      • Alonso C.
      • Gaggini M.
      • et al.
      Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests.
      ,
      • Simon J.
      • Ouro A.
      • Ala-Ibanibo L.
      • Presa N.
      • Delgado T.C.
      • Martinez-Chantar M.L.
      Sphingolipids in non-alcoholic fatty liver disease and hepatocellular carcinoma: ceramide turnover.
      ==
      • Grammatikos G.
      • Schoell N.
      • Ferreiros N.
      • Bon D.
      • Herrmann E.
      • Farnik H.
      • et al.
      Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma.
      • Guri Y.
      • Colombi M.
      • Dazert E.
      • Hindupur S.K.
      • Roszik J.
      • Moes S.
      • et al.
      mTORC2 promotes tumorigenesis via lipid synthesis.
      ,
      • Yang J.
      • Tian Y.
      • Zheng R.
      • Li L.
      • Qiu F.
      Endocannabinoid system and the expression of endogenous ceramides in human hepatocellular carcinoma.


      • Yang J.
      • Tian Y.
      • Zheng R.
      • Li L.
      • Qiu F.
      Endocannabinoid system and the expression of endogenous ceramides in human hepatocellular carcinoma.
      S1P
      • Grammatikos G.
      • Schoell N.
      • Ferreiros N.
      • Bon D.
      • Herrmann E.
      • Farnik H.
      • et al.
      Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma.
      • Cheng J.C.
      • Wang E.Y.
      • Yi Y.
      • Thakur A.
      • Tsai S.H.
      • Hoodless P.A.
      S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation.
      • Bao M.
      • Chen Z.
      • Xu Y.
      • Zhao Y.
      • Zha R.
      • Huang S.
      • et al.
      Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma.
      • Zeng Y.
      • Yao X.
      • Chen L.
      • Yan Z.
      • Liu J.
      • Zhang Y.
      • et al.
      Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-beta autocrine loop.
      Sphingomyelin
      • Cotte A.K.
      • Cottet V.
      • Aires V.
      • Mouillot T.
      • Rizk M.
      • Vinault S.
      • et al.
      Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients.
      • Hall Z.
      • Chiarugi D.
      • Charidemou E.
      • Leslie J.
      • Scott E.
      • Pellegrinet L.
      • et al.
      Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma.
      Data for PSC and CCA are based on single reference (Banales et al.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      )
      ↑Upregulated metabolites; ↓ downregulated metabolites.
      BA, bile acids; CCA, cholangiocarcinoma; HCC, hepatocellular carcinoma; LPC, lysophosphatidylcholine; MUFA, monounsaturated fatty acid; NAFLD, non-alcoholic fatty liver disease; PC, phosphatidylcholine; PSC, primary sclerosing cholangitis; PUFA, polyunsaturated fatty acid; S1P, sphingosine-1-phosphate; SFA, saturated fatty acid; SL, surrounding liver; SM, sphingomyelin; T, tumour; TG, triglyceride.

      Alcohol-related liver disease

      Excessive alcohol consumption is the main aetiological factor for liver cancer development in Central and Eastern Europe.
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      In patients with alcohol-related liver disease (ALD), FAs that accumulate in the liver are predominantly released from the adipose tissue.
      • Wang M.
      • Zhang X.J.
      • Feng K.
      • He C.
      • Li P.
      • Hu Y.J.
      • et al.
      Dietary alpha-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice.
      Ethanol increases the uptake of FAs by the liver in vivo
      • Berk P.D.
      • Zhou S.
      • Bradbury M.W.
      Increased hepatocellular uptake of long chain fatty acids occurs by different mechanisms in fatty livers due to obesity or excess ethanol use, contributing to development of steatohepatitis in both settings.
      and in vitro
      • Zhou S.L.
      • Gordon R.E.
      • Bradbury M.
      • Stump D.
      • Kiang C.L.
      • Berk P.D.
      Ethanol up-regulates fatty acid uptake and plasma membrane expression and export of mitochondrial aspartate aminotransferase in HepG2 cells.
      leading to intrahepatic accumulation of TGs.
      • Zhong W.
      • Zhao Y.
      • Tang Y.
      • Wei X.
      • Shi X.
      • Sun W.
      • et al.
      Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis.
      Abstinence has been shown to reduce serum FA and LPC levels, while TGs stay elevated
      • Israelsen M.
      • Kim M.
      • Suvitaival T.
      • Madsen B.S.
      • Hansen C.D.
      • Torp N.
      • et al.
      Comprehensive lipidomics reveals phenotypic differences in hepatic lipid turnover in ALD and NAFLD during alcohol intoxication.
      in patients with ALD (Table 1). Moreover, in several models, FA synthesis pathways are significantly upregulated in mice fed alcohol ad libitum in their drinking water.
      • Ji C.
      • Kaplowitz N.
      Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.
      • Ji C.
      • Shinohara M.
      • Vance D.
      • Than T.A.
      • Ookhtens M.
      • Chan C.
      • et al.
      Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine-induced fatty liver.
      • You M.
      • Fischer M.
      • Deeg M.A.
      • Crabb D.W.
      Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP).

      Non-alcoholic fatty liver disease

      NAFLD, ranging from steatosis to its progressive form NASH, is the most common liver disease in the developed world,
      • Bray F.
      • Ferlay J.
      • Soerjomataram I.
      • Siegel R.L.
      • Torre L.A.
      • Jemal A.
      Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
      and is an important risk factor for liver cancer development. NAFLD is associated with prominent changes in both the hepatic and serum lipidomes at the onset of steatosis, but as the disease progresses to NASH, only certain TGs
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      • Lewinska M.
      • Santos-Laso A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      and steroids
      • Caussy C.
      • Ajmera V.H.
      • Puri P.
      • Hsu C.L.
      • Bassirian S.
      • Mgdsyan M.
      • et al.
      Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease.
      change progressively. However, NAFLD-HCC is reflected by a complete rearrangement of the serum lipidome
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      (Table 1). Patients with NAFLD have significantly increased levels of FAs, TGs, ceramides (Cer), and BAs, while phospholipids in the blood are depleted.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      In NAFLD, the most important metabolic dysregulation is a result of high lipolysis and non-esterified FAs released into the bloodstream.
      • Bugianesi E.
      • Gastaldelli A.
      • Vanni E.
      • Gambino R.
      • Cassader M.
      • Baldi S.
      • et al.
      Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.
      Hepatic FA profiles in patients with NAFLD are severely deregulated.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      Specifically, SFAs and PUFAs are significantly increased in NAFLD compared to normal livers.
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      Conversely, in murine models, a higher consumption of n-6 FAs leads to the onset of NASH by inducing mitochondrial dysfunction and altered apoptosis.
      • Schuster S.
      • Johnson C.D.
      • Hennebelle M.
      • Holtmann T.
      • Taha A.Y.
      • Kirpich I.A.
      • et al.
      Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice.
      Furthermore, palmitic acid and linoleic acid (LA) have been found to modulate the immune response in murine models of NASH.
      • van der Windt D.J.
      • Sud V.
      • Zhang H.
      • Varley P.R.
      • Goswami J.
      • Yazdani H.O.
      • et al.
      Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis.
      Palmitic acid and LA stimulate neutrophils
      • van der Windt D.J.
      • Sud V.
      • Zhang H.
      • Varley P.R.
      • Goswami J.
      • Yazdani H.O.
      • et al.
      Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis.
      as well as macrophages
      • Fu H.
      • Tang B.
      • Lang J.
      • Du Y.
      • Cao B.
      • Jin L.
      • et al.
      High-fat diet promotes macrophage-mediated hepatic inflammation and aggravates diethylnitrosamine-induced hepatocarcinogenesis in mice.
      to express and secrete inflammatory proteins (for example, interleukin-6, interleukin-10, chemokine (C-C motif) ligand 2, interferon-γ, and tumour necrosis factor). LA also upregulates carnitine palmitoyltransferase (CPT) leading to increased apoptosis of CD4+ T cells.
      • Brown Z.J.
      • Fu Q.
      • Ma C.
      • Kruhlak M.
      • Zhang H.
      • Luo J.
      • et al.
      Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4(+) T cell apoptosis promoting HCC development.
      This LA-mediated loss of intrahepatic CD4+ T cells, but not CD8+ T lymphocytes, results in HCC progression.
      • Ma C.
      • Kesarwala A.H.
      • Eggert T.
      • Medina-Echeverz J.
      • Kleiner D.E.
      • Jin P.
      • et al.
      NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis.
      On a background of NASH, CD8+ T cells promote the incidence of murine HCC because of impaired tumour surveillance and increased tissue damage by lymphocytes.
      • Pfister D.
      • Nunez N.G.
      • Pinyol R.
      • Govaere O.
      • Pinter M.
      • Szydlowska M.
      • et al.
      NASH limits anti-tumour surveillance in immunotherapy-treated HCC.
      NAFLD is characterised by a significant increase of TGs in the circulation
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Kotronen A.
      • Velagapudi V.R.
      • Yetukuri L.
      • Westerbacka J.
      • Bergholm R.
      • Ekroos K.
      • et al.
      Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations.
      ,
      • Oresic M.
      • Hyotylainen T.
      • Kotronen A.
      • Gopalacharyulu P.
      • Nygren H.
      • Arola J.
      • et al.
      Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids.
      and liver.
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      These are TGs with longer carbon chains and fewer double bonds.
      • Puri P.
      • Baillie R.A.
      • Wiest M.M.
      • Mirshahi F.
      • Choudhury J.
      • Cheung O.
      • et al.
      A lipidomic analysis of nonalcoholic fatty liver disease.
      ,
      • Westerbacka J.
      • Kotronen A.
      • Fielding B.A.
      • Wahren J.
      • Hodson L.
      • Perttila J.
      • et al.
      Splanchnic balance of free fatty acids, endocannabinoids, and lipids in subjects with nonalcoholic fatty liver disease.
      ,
      • Kotronen A.
      • Seppanen-Laakso T.
      • Westerbacka J.
      • Kiviluoto T.
      • Arola J.
      • Ruskeepaa A.L.
      • et al.
      Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver.
      Among the lipids increased in both the blood and livers of NAFLD patients are Cer,
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      ,
      • Gorden D.L.
      • Myers D.S.
      • Ivanova P.T.
      • Fahy E.
      • Maurya M.R.
      • Gupta S.
      • et al.
      Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
      ,
      • Promrat K.
      • Longato L.
      • Wands J.R.
      • de la Monte S.M.
      Weight loss amelioration of non-alcoholic steatohepatitis linked to shifts in hepatic ceramide expression and serum ceramide levels.
      with an increase in dihydroceramides
      • Luukkonen P.K.
      • Zhou Y.
      • Sadevirta S.
      • Leivonen M.
      • Arola J.
      • Oresic M.
      • et al.
      Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease.
      ,
      • Apostolopoulou M.
      • Gordillo R.
      • Koliaki C.
      • Gancheva S.
      • Jelenik T.
      • De Filippo E.
      • et al.
      Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis.
      that are basic markers of de novo Cer synthesis.
      • Masoodi M.
      • Gastaldelli A.
      • Hyotylainen T.
      • Arretxe E.
      • Alonso C.
      • Gaggini M.
      • et al.
      Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests.
      As such, murine models have shown a decrease in hepatic steatosis when levels of liver Cer are lowered by an increase in acid ceramidase activity
      • Xia J.Y.
      • Holland W.L.
      • Kusminski C.M.
      • Sun K.
      • Sharma A.X.
      • Pearson M.J.
      • et al.
      Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis.
      or deletion of dihydroceramide desaturase 1109. Moreover, several studies have shown that BA levels are increased in the liver,
      • Dasarathy S.
      • Yang Y.
      • McCullough A.J.
      • Marczewski S.
      • Bennett C.
      • Kalhan S.C.
      Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis.
      ,
      • Aranha M.M.
      • Cortez-Pinto H.
      • Costa A.
      • da Silva I.B.
      • Camilo M.E.
      • de Moura M.C.
      • et al.
      Bile acid levels are increased in the liver of patients with steatohepatitis.
      plasma
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Dasarathy S.
      • Yang Y.
      • McCullough A.J.
      • Marczewski S.
      • Bennett C.
      • Kalhan S.C.
      Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis.
      ,
      • Mouzaki M.
      • Wang A.Y.
      • Bandsma R.
      • Comelli E.M.
      • Arendt B.M.
      • Zhang L.
      • et al.
      Bile acids and dysbiosis in non-alcoholic fatty liver disease.
      and faeces
      • Mouzaki M.
      • Wang A.Y.
      • Bandsma R.
      • Comelli E.M.
      • Arendt B.M.
      • Zhang L.
      • et al.
      Bile acids and dysbiosis in non-alcoholic fatty liver disease.
      of patients with NASH. Elevated plasma levels of glycocholate, taurocholate, and taurochenodeoxycholate
      • Puri P.
      • Daita K.
      • Joyce A.
      • Mirshahi F.
      • Santhekadur P.K.
      • Cazanave S.
      • et al.
      The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids.
      ,
      • Dasarathy S.
      • Yang Y.
      • McCullough A.J.
      • Marczewski S.
      • Bennett C.
      • Kalhan S.C.
      Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis.
      are associated with progressive liver deterioration and dysfunction. Furthermore, increased levels of cholic, chenodeoxycholic, and deoxycholic acids are present in liver tissue,
      • Aranha M.M.
      • Cortez-Pinto H.
      • Costa A.
      • da Silva I.B.
      • Camilo M.E.
      • de Moura M.C.
      • et al.
      Bile acid levels are increased in the liver of patients with steatohepatitis.
      leading to altered expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation.
      • Chavez-Talavera O.
      • Tailleux A.
      • Lefebvre P.
      • Staels B.
      Bile acid control of metabolism and inflammation in obesity, Type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease.
      Meanwhile, PCs and LPCs (particularly classes that contain PUFAs) are depleted in livers
      • Ooi G.J.
      • Meikle P.J.
      • Huynh K.
      • Earnest A.
      • Roberts S.K.
      • Kemp W.
      • et al.
      Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis.
      and blood obtained from patients with NAFLD
      • Oresic M.
      • Hyotylainen T.
      • Kotronen A.
      • Gopalacharyulu P.
      • Nygren H.
      • Arola J.
      • et al.
      Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids.
      and NASH.
      • Gorden D.L.
      • Myers D.S.
      • Ivanova P.T.
      • Fahy E.
      • Maurya M.R.
      • Gupta S.
      • et al.
      Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
      Interestingly, sphingolipids, phospholipids, and TGs are putative biomarkers of NAFLD progression.
      • Mayo R.
      • Crespo J.
      • Martinez-Arranz I.
      • Banales J.M.
      • Arias M.
      • Minchole I.
      • et al.
      Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts.
      ,
      • Gorden D.L.
      • Myers D.S.
      • Ivanova P.T.
      • Fahy E.
      • Maurya M.R.
      • Gupta S.
      • et al.
      Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
      Furthermore, cholesterol promotes NAFLD development.
      • Wang X.
      • Cai B.
      • Yang X.
      • Sonubi O.O.
      • Zheng Z.
      • Ramakrishnan R.
      • et al.
      Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis.

      Primary sclerosing cholangitis

      Previously, studies with relatively limited sample sizes (n <30) have investigated lipidomic changes in patients with PSC compared to healthy individuals.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Bell L.N.
      • Wulff J.
      • Comerford M.
      • Vuppalanchi R.
      • Chalasani N.
      Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis.
      ,
      • Trottier J.
      • Bialek A.
      • Caron P.
      • Straka R.J.
      • Heathcote J.
      • Milkiewicz P.
      • et al.
      Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study.
      The most comprehensive lipidomic study
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      has shown prominent changes in patients with PSC compared to healthy individuals, reporting over 150 altered metabolites. Overall, serum obtained from patients with PSC comprised augmented levels of BAs, phosphatidylethanolamines, PCs and LPCs, and lysophosphatidylinositols, as well as decreased levels of some FA, SM and TG species (Table 1). Previously, FA deregulation has been observed in PSC.
      • Bell L.N.
      • Wulff J.
      • Comerford M.
      • Vuppalanchi R.
      • Chalasani N.
      Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis.
      The liver plays a major role in cholesterol clearance via BA secretion; thus, it is not surprising that BAs are among the most deregulated lipids.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Sang C.
      • Wang X.
      • Zhou K.
      • Sun T.
      • Bian H.
      • Gao X.
      • et al.
      Bile acid profiles are distinct among patients with different etiologies of chronic liver disease.
      ,
      • Bell L.N.
      • Wulff J.
      • Comerford M.
      • Vuppalanchi R.
      • Chalasani N.
      Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis.
      ,
      • Trottier J.
      • Bialek A.
      • Caron P.
      • Straka R.J.
      • Heathcote J.
      • Milkiewicz P.
      • et al.
      Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study.
      Particularly, taurine and glycine conjugates of primary BAs have been found elevated in patients with PSC compared to non-cholestatic individuals.
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Sang C.
      • Wang X.
      • Zhou K.
      • Sun T.
      • Bian H.
      • Gao X.
      • et al.
      Bile acid profiles are distinct among patients with different etiologies of chronic liver disease.
      ,
      • Bell L.N.
      • Wulff J.
      • Comerford M.
      • Vuppalanchi R.
      • Chalasani N.
      Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis.
      ,
      • Trottier J.
      • Bialek A.
      • Caron P.
      • Straka R.J.
      • Heathcote J.
      • Milkiewicz P.
      • et al.
      Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study.

      Deregulation of lipid metabolism in liver cancer

      Deregulated lipid metabolism has been strongly associated with the onset and progression of HCC in several epidemiological studies
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      ,
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      • Cho Y.
      • Cho E.J.
      • Yoo J.J.
      • Chang Y.
      • Chung G.E.
      • Jeong S.M.
      • et al.
      Association between lipid profiles and the incidence of hepatocellular carcinoma: a nationwide population-based study.
      as well as in in vitro and in vivo modelling (Table 1). In comparison, CCA lipidomic studies are currently limited to biomarker discovery
      • Satriano L.
      • Lewinska M.
      • Rodrigues P.M.
      • Banales J.M.
      • Andersen J.B.
      Metabolic rearrangements in primary liver cancers: cause and consequences.
      ,
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      ,
      • Padthaisong S.
      • Phetcharaburanin J.
      • Klanrit P.
      • Li J.V.
      • Namwat N.
      • Khuntikeo N.
      • et al.
      Integration of global metabolomics and lipidomics approaches reveals the molecular mechanisms and the potential biomarkers for postoperative recurrence in early-stage cholangiocarcinoma.
      ; thus, a comprehensive investigation of the biliary tract and CCA lipidome landscapes are still lacking.

      Lipidomic landscape is deregulated in liver cancer

      Several lipidomic studies have investigated the blood lipidome to understand the progressive nature of CCA,
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      HCC
      • Wu J.M.
      • Skill N.J.
      • Maluccio M.A.
      Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma.
      ,
      • Gao R.
      • Cheng J.
      • Fan C.
      • Shi X.
      • Cao Y.
      • Sun B.
      • et al.
      Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma.
      ,
      • Wu T.
      • Zheng X.
      • Yang M.
      • Zhao A.
      • Li M.
      • Chen T.
      • et al.
      Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients.
      ,
      • Sun J.
      • Zhao Y.
      • Qin L.
      • Li K.
      • Zhao Y.
      • Sun H.
      • et al.
      Metabolomic profiles for HBV related hepatocellular carcinoma including alpha-fetoproteins positive and negative subtypes.
      ,
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      ,
      • Ismail I.T.
      • Elfert A.
      • Helal M.
      • Salama I.
      • El-Said H.
      • Fiehn O.
      Remodeling lipids in the transition from chronic liver disease to hepatocellular carcinoma.
      of viral origin, and more recently NAFLD-HCC.
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      As such, the FA composition in the circulation dynamically changes as the liver deteriorates and progresses towards HCC
      • Banales J.M.
      • Inarrairaegui M.
      • Arbelaiz A.
      • Milkiewicz P.
      • Muntane J.
      • Munoz-Bellvis L.
      • et al.
      Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis.
      (this is not seen in CCA). Several SFAs and MUFAs are increased during disease progression: chronic hepatitis -> cirrhosis -> HCC.
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      ,
      • Ismail I.T.
      • Elfert A.
      • Helal M.
      • Salama I.
      • El-Said H.
      • Fiehn O.
      Remodeling lipids in the transition from chronic liver disease to hepatocellular carcinoma.
      Particularly, the MUFAs (16:1) and (18:1) progressively increase during development of viral-associated HCC
      • Zhou L.
      • Wang Q.
      • Yin P.
      • Xing W.
      • Wu Z.
      • Chen S.
      • et al.
      Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases.
      ,
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      ; however, these observations have not been corroborated in NAFLD-HCC.
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      Conversely, serum levels of PUFAs are decreased in the blood of patients with HCC.
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      ,
      • Muir K.
      • Hazim A.
      • He Y.
      • Peyressatre M.
      • Kim D.Y.
      • Song X.
      • et al.
      Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.
      ,
      • Vlock E.M.
      • Karanjit S.
      • Talmon G.
      • Farazi P.A.
      Reduction of polyunsaturated fatty acids with tumor progression in a lean non-alcoholic steatohepatitis-associated hepatocellular carcinoma mouse model.
      Sphingolipids are an important lipid class that is upregulated in HCC
      • Lewinska M.S.-L.,A.
      • Arretxe E.
      • Alonso C.
      • Zhuravleva E.
      • Jimenez-Aguero R.
      • Eizaguirre E.
      • et al.
      The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma.
      ,
      • Grammatikos G.
      • Schoell N.
      • Ferreiros N.
      • Bon D.
      • Herrmann E.
      • Farnik H.
      • et al.
      Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma.
      ,
      • Guri Y.
      • Colombi M.
      • Dazert E.
      • Hindupur S.K.
      • Roszik J.
      • Moes S.
      • et al.
      mTORC2 promotes tumorigenesis via lipid synthesis.
      and CCA.
      • Hirose Y.
      • Nagahashi M.
      • Katsuta E.
      • Yuza K.
      • Miura K.
      • Sakata J.
      • et al.
      Generation of sphingosine-1-phosphate is enhanced in biliary tract cancer patients and is associated with lymphatic metastasis.
      As such, S1P, a biologically active sphingolipid, has been shown to promote cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in HCC
      • Cheng J.C.
      • Wang E.Y.
      • Yi Y.
      • Thakur A.
      • Tsai S.H.
      • Hoodless P.A.
      S1P stimulates proliferation by upregulating CTGF expression through S1PR2-mediated YAP activation.
      • Bao M.
      • Chen Z.
      • Xu Y.
      • Zhao Y.
      • Zha R.
      • Huang S.
      • et al.
      Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma.
      • Zeng Y.
      • Yao X.
      • Chen L.
      • Yan Z.
      • Liu J.
      • Zhang Y.
      • et al.
      Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-beta autocrine loop.
      as well as lymph node metastasis in CCA.
      • Hirose Y.
      • Nagahashi M.
      • Katsuta E.
      • Yuza K.
      • Miura K.
      • Sakata J.
      • et al.
      Generation of sphingosine-1-phosphate is enhanced in biliary tract cancer patients and is associated with lymphatic metastasis.
      Accordingly, sphingosine-1-phosphate receptor (S1PR) could be a potential therapeutic target in HCC, as it is known to promote HCC invasion
      • Yokota T.
      • Nojima H.
      • Kuboki S.
      • Yoshitomi H.
      • Furukawa K.
      • Takayashiki T.
      • et al.
      Sphingosine-1-phosphate Receptor-1 promotes vascular invasion and EMT in hepatocellular carcinoma.